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Abstract—The L-user additive white Gaussian noise multi-
way relay channel is considered, where multiple users exchange
information through a single relay at a common rate. Existing
coding strategies, i.e., complete-decode-forward and compress-
forward are shown to be bounded away from the cut-set upper
bound at high signal-to-noise ratios (SNR). It is known that the
gap between the compress-forward rate and the capacity upper
bound is a constant at high SNR, and that between the complete-
decode-forward rate and the upper bound increases with SNR
at high SNR. In this paper, a functional-decode-forward coding
strategy is proposed. It is shown that for L ≥ 3, complete-
decode-forward achieves the capacity when SNR ≤ 0 dB, and
functional-decode-forward achieves the capacity when SNR ≥ 0
dB. For L = 2, functional-decode-forward achieves the capacity
asymptotically as SNR increases.

I. INTRODUCTION

In this paper, we consider the additive white Gaussian noise

(AWGN) multi-way relay channel (MWRC), in which L users

exchange full information at a common rate via a relay. When

all nodes are subject to the same power constraint, we find:

• for L ≥ 3, the capacity,

• for L = 2, asymptotic capacity results as SNR increases.

It has been shown that the complete-decode-forward1 coding

strategy performs poorly at high SNR, and the compress-

forward coding strategy achieves rates within a constant num-

ber of bits of the capacity for all SNR [1]. In this paper, we

show that complete-decode-forward achieves the capacity for

SNR ≤ 0 dB when there are more than two users. However,

there is still a finite gap between the achievable rates and the

cut-set upper bound at medium to high SNR.

We use a functional-decode-forward coding strategy, where

the relay decodes functions of the users’ messages and broad-

casts the functions back to the users. The functions are defined

such that combining the functions and its own message, every

user is able to decode the messages of all other users. We

close the gap between the capacity upper bound and achievable

rates by showing that functional-decode-forward achieves the

capacity for SNR ≥ 0 dB when there are more than two

users. For two users, functional-decode-forward achieves the

capacity asymptotically as SNR increases.

This work is supported by the Australian Research Council under grant
DP0877258.

1We modified the strategy name “decode-and-forward” used in the original
paper [1] to distinguish this coding strategy and our proposed functional-
decode-forward coding strategy.

II. PRELIMINARY

We first introduce the concept of functional-decode-forward

for the MWRC by using a simple three-user example. In this

paper, we denote by Xi node i’s input to the channel, Yi the

channel output received by node i, and Wi node i’s message.

The idea of functional-decode-forward is for the relay to de-

code only functions of the users’ messages, and the functions,

when broadcast from the relay back to the users, are merely
sufficient for them to decode other users’ messages. The more

information the relay needs to decode, the lower the rates the

users can send on the uplink. For the two-user MWRC, the

modular sum of the users’ codewords is a good choice of

function for certain types of channels, e.g., the AWGN two-

way relay channel [2], [3]. However, decoding the modular

sum of all users’ codewords will not work for MWRCs with

more than two users. Thus, for the general L-user case, the

best function for the relay to decode is not obvious.

In this paper, we propose that the relay decodes and for-

wards functions of message pairs. To illustrate this strategy,

we consider the following three-user noiseless MWRC:

• uplink: Y0 = X1 ⊕X2 ⊕X3,

• downlink: Y1 = Y2 = Y3 = X0,

where Xi ∈ {0, 1}, ∀i, and ⊕ is modulo-two addition. We

assume that the messages Wi, ∀i, are random bits. The users

split their transmissions into two phases. In the first phase, the

users send X1 = W1, X2 = W2, X3 = 0. In the second phase,

the users send W1 = 0, X2 = W2, X3 = W3. At the end of

the two phases, the relay has (W1 ⊕W2) and (W2 ⊕W3). It

then broadcasts these combined messages back to the users in

two channel uses. After getting the messages from the relay,

user 1 can obtain W2 = (W1 ⊕W2)⊕W1 followed by W3 =
(W2 ⊕W3) ⊕W2. User 2 can recover (W1,W3) and user 3

can recover (W1,W2) similarly.

Using this functional-decode-forward strategy, each user can

send 1 message bit in two channel uses, i.e., each user can

transmit at the rate of 1
2 bit/channel use. On the downlink,

each user can receive a maximum of 1 information bit/received

symbol. Since each user must decode two users’ messages

(of 1 bit each), the capacity of this MWRC cannot exceed
1
2 bit/channel use. So, the functional-decode-forward achieves

the capacity in this example. Note that the capacity-achieving

functional-decode-forward coding strategy is not unique.

Had the relay used the complete-decode-forward coding

strategy, it would need at least three channel uses to decode
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Fig. 1. An L-user AWGN MWRC, where Ŵi is user i’s estimate of all
other users’ messages

all three messages in the uplink. Hence the maximum rate

achievable for each message is 1
3 bit/channel use.

III. CHANNEL MODEL

Fig. 1 depicts the L-user AWGN MWRC considered in

this paper, where the uplink and the downlink channels are

separated, i.e., there is no direct user-to-user link. Nodes 1 to

L are the users, and node 0 is the relay. By definition, L ≥ 2.

Each user is to decode the messages from all other users.

Definition 1: We define the AWGN MWRC as follows:

• The uplink channel is the sum of all users’ channel inputs

and the relay’s receiver noise:

Y0 =
L∑

i=1

Xi +N0, (1)

where the Xi are subject to the power constraints

E[X2
i ] ≤ Pi, and N0 is an i.i.d. zero-mean Gaussian

random variable with unit variance, E[N2
0 ] = σ2

0 = 1.

• The downlink consists of an independent point-to-point

AWGN channel for each user, i.e.,

Yi = X0 +Ni, ∀i ∈ {1, 2, . . . , L}, (2)

where X0 is subject to the power constraint E[X2
0 ] ≤ P0,

and Ni is user i’s receiver noise and is an i.i.d. zero-mean

Gaussian random variable with unit variance, E[N2
i ] =

σ2
i = 1.

Consider the restricted MWRC in the sense that the trans-

mitted signals of each user can only depend on its message,

and cannot depend on its received signals. Consider the

following block code of n channel uses:

Definition 2: A (2nR1 , 2nR2 , . . . , 2nRL , n) code for the

MWRC consists of

1) L user messages: Wi ∈ Wi = {1, 2, . . . , 2nRi}, for i ∈
{1, 2, . . . , L}.

2) L user encoding functions: Xi(Wi) = fi(Wi), for i ∈
{1, 2, . . . , L}.

3) A set of relay encoding functions: X0[t] =
f0,t(Y0[1], Y0[2], . . . , Y0[t− 1]), for t ∈ {1, 2, . . . , n}.

4) L user decoding functions: Ŵi �
(Ŵi,1, . . . , Ŵi,i−1, Ŵi,i+1, . . . , Ŵi,L) = gi(Y i,Wi),
i ∈ {1, . . . , L}, where Ŵi,j is node i’s estimate of Wj .

In this paper, bold letters are used to define vectors of length

n, e.g., X = (X[1], X[2], . . . , X[n]).
Definition 3: Assuming that the message tuple ω �

(W1,W2, . . . ,WL) is uniformly distributed over the product

set Ω � W1 ×W2 × · · · ×WL, the average error probability
for the (2nR1 , 2nR2 , . . . , 2nRL , n) code is defined as

Pe = Pr
{
Ŵi,j �= Wj , for some j ∈ [1, L] and some i �= j

}

=
1

2n
∑L

j=1 Rj

∑
α∈Ω

Pr

{ ⋃
1≤i≤L

gi(Y i,Wi) �= α−i

∣∣∣∣∣ω = α

}
,

where α−i is defined as α without the i-th entry.

Definition 4: A rate tuple (R1, R2, . . . , RL) is said to

be achievable if, for any ε > 0, there is at least one

(2nR1 , 2nR2 , . . . , 2nRL , n) code such that Pe < ε.
We say that a node can reliably decode a message if and

only if the average probability that the node wrongly decodes

the message can be made arbitrarily small.

In this paper, we assume that Pi = P , ∀i ∈ [1, L], and we

focus on the common rate R = Ri, ∀i ∈ [1, L]. We say that the

common rate R is achievable if the rate tuple (R,R, . . . , R)
is achievable.

Definition 5: We define the common-rate capacity of the

MWRC as (also known as the symmetrical capacity [1])

CCR � sup{R : (R,R, . . . , R) is achievable}. (4)

The common rate is useful in systems where all users have

the same amount of information to send, or in fair systems

where every user is to be given the same guaranteed uplink

bandwidth, i.e., each user can send data up to a certain rate.

IV. EXISTING RESULTS

A. Capacity Upper Bound

An upper bound to the common-rate capacity of the AWGN

MWRC based on cut-set arguments (see [4, page 589 (Theo-

rem 15.10.1)]) is given by:

Proposition 1 ( [1, Proposition 1] with one cluster):
The common-rate capacity of the AWGN MWRC is

upper-bounded by

CCR ≤ min

{
log[1 + (L− 1)P ]

2(L− 1)
,
log[1 + P0]

2(L− 1)

}
(5a)

� RUB. (5b)

In this paper, log denotes logarithm to the base two, and

hence the rates are in bits/channel use.

B. Complete-Decode-Forward

Using the complete-decode-forward coding strategy, the

relay decodes all users’ messages, encodes and broadcasts a

function of the messages back to the users. We have

Proposition 2 ( [1, Proposition 3] with one cluster):
Consider an L-user AWGN MWRC. Complete-decode-

forward achieves the following common rate:

RCDF = min

{
1

2L
log[1 + LP ],

1

2(L− 1)
log[1 + P0]

}
. (6)
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C. Compress-Forward

Using the compress-forward coding strategy, the relay quan-

tizes its received signals, encodes and broadcasts them to the

users. We have

Proposition 3 ( [1, Proposition 4] with one cluster):
Consider an L-user AWGN MWRC. Compress-forward

achieves the following common rate:

RCF =
1

2(L− 1)
log

[
1 +

(L− 1)PP0

1 + (L− 1)P + P0

]
. (7)

Remark 1: It has been shown [1, Remark 2] that the

compress-forward coding strategy always achieves a higher

common rate than the amplify-forward coding strategy does.

V. FUNCTIONAL-DECODE-FORWARD CODING STRATEGY

Our proposed functional-decode-forward coding strategy for

the AWGN MWRC is based on lattice codes. We first review

some basics of lattice codes. An n-dimensional lattice Λ is a

discrete subgroup of the n-dimensional Euclidean space Rn

under the normal vector addition operation. This means if

v1,v2 ∈ Λ, then v1 + v2 ∈ Λ. For any x ∈ Rn, a modulo-Λ
operation is is defined as: x mod Λ = x − QΛ(x), where

QΛ(x) ∈ Λ is the lattice point that is closest to x. The

fundamental Voronoi region V(Λ) for a lattice Λ is the set of

all points in Rn that are closer to the origin than they are to

any other lattice point, i.e., V(Λ) = {x ∈ Rn : QΛ(x) = 0},

where 0, the origin, is the all-zero vector of length n.

For lattice encoding, we consider two lattices, where the

coarse lattice Λ is nested in the fine lattice Λf , i.e., Λ ⊆ Λf .

A message w is mapped to a fine lattice point that sits in

the fundamental Voronoi region of the course lattice Λ, i.e.,

v(w) ∈ {Λf ∩V(Λ)}. Λ is selected such that the the transmit

power constraint of all the users can be met, and Λf is selected

such that there are 2nR fine lattice points in {Λf ∩ V(Λ)}.

A. Uplink

The uplink transmissions are split into (L− 1) blocks of n
channel uses each. In block l, 1 ≤ l ≤ L − 1, nodes l and

(l+1) transmit using lattice codes, and all other nodes do not

transmit, i.e.,

Xi(Wi) =

{
V (Wi) + di mod Λ, if i = l, l + 1

0, otherwise,
(8)

where 0 is the all-zero vector of length n, V (Wi) ∈ {Λf ∩
V(Λ)} contains user’s information Wi, and di ∈ Rn is

an independently and randomly generated vector uniformly

distributed over V(Λ) which is fixed for all transmissions.

As the codewords for all users are uniformly distributed in

V(Λ), all users transmit at the same power, P ′. For L ≥ 3,

since nodes 2 to (L− 1) only transmit in two of the (L− 1)
blocks, and nodes 1 and L transmit in one block, we can set

all nodes to transmit at P ′ = L−1
2 P while still satisfying the

average power constraint of E[X2
i ] ≤ P . For L = 2, there is

only one block, and both the users transmit at power P ′ = P .

In block l, the relay decodes V l,l+1 �
(
V (Wl)+V (Wl+1)

)
mod Λ, which is a function of the messages Wl and Wl+1.

Doing this for all (L−1) blocks, the relay can reliably decode

the functions (V 1,2,V 2,3, . . . ,V L−1,L) if [2], [3]

R ≤ 1

L− 1

{
1

2
log

[
1

2
+ P ′

]}+

, (9)

with a sufficiently large n. Here, P ′ is the transmit power of

each user, given by

P ′ =

{
P, if L = 2
L−1
2 P, otherwise (L ≥ 3),

(10)

and x+ = max{x, 0}. The factor 1
L−1 in (9) takes into

account that the transmission and decoding for each V l,l+1

only happens in one of the (L− 1) blocks.

B. Downlink

Now, since V l,l+1 ∈ {Λf ∩V(Λ)}, ∀l ∈ [1, L−1], there are

at most 2n(L−1)R unique vectors (V 1,2,V 2,3, . . . ,V L−1,L).
In the downlink, the relay broadcasts this vector back to

all the users. As the downlink to each user is a point-

to-point AWGN channel, each user can reliably decode

(V 1,2,V 2,3, . . . ,V L−1,L) if

(L− 1)R ≤ 1

2
log[1 + P0], (11)

with a sufficiently large n.

Assuming that user i, i ∈ [1, L], is able to correctly decode

(V 1,2,V 2,3, . . . ,V L−1,L) sent by the relay, it performs the

following (the order of decoding is important) to obtain all

other users’ messages:

V (Wi+1) =
(
V i,i+1 − V (Wi)

)
mod Λ (12)

V (Wi+2) =
(
V i+1,i+2 − V (Wi+1)

)
mod Λ (13)

· · ·
V (WL) =

(
V L−1,L − V (WL−1)

)
mod Λ (14)

V (Wi−1) =
(
V i−1,i − V (Wi)

)
mod Λ (15)

V (Wi−2) =
(
V i−2,i−1 − V (Wi−1)

)
mod Λ (16)

· · ·
V (W1) =

(
V 1,2 − V (W2)

)
mod Λ. (17)

C. Achievability

Combining the uplink and the downlink, if (9) and (11)

are satisfied, all users can reliably decode the messages of all

other users. So, using this functional-decode-forward coding

strategy, the following common rate is achievable:

R = min

{{
log

[
1
2 + P ′]

2(L− 1)

}+

,
log[1 + P0]

2(L− 1)

}
, (18)

where P ′ is defined in (10).

Remark 2: The strategy proposed here is different from the

strategy described in [1, Section IV.B.] (also using lattice

codes), where there are more than one cluster with two users in

each cluster, and only the two users in each cluster exchange

messages. In the MWRC considered in this paper, there is

only one cluster with L users and all users engage in full data

exchange.
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D. An Improved Functional-Decode-Forward

Although we have shown that the functional-decode-forward

coding strategy described in Sections V-A and V-B achieves

the capacity of the binary MWRC [5], it is not always

optimal in the AWGN counterpart. Now, we slightly modify

this strategy to improve its rate in the AWGN MWRC, i.e.,

(18). We have seen that on the uplink for L ≥ 3, nodes

1 and L only transmit in one of the (L − 1) transmission

blocks, while the other nodes transmit in two of the (L − 1)
transmission blocks. Setting P ′ = L−1

2 P , nodes 1 and L are

not transmitting at their maximum allowable power. Consider

multiple messages for each user, and let the t-th message tuple

be (W1[t],W2[t], . . . ,WL[t]), for t ∈ {1, 2, 3, . . . }. For each

t, we have (L− 1) blocks of transmissions. Instead of fixing

nodes l and (l + 1) to transmit in block l, 1 ≤ l ≤ L − 1,

for all message tuples, we rotate the transmission scheme for

each message tuple such that in block l, nodes (l + t − 2
mod L) + 1 and (l+ t− 1 mod L) + 1 transmit, and all the

other nodes do not transmit, i.e., Xi+1(Wi+1[t]) =⎧⎪⎨
⎪⎩
V (Wi+1[t]) + di+1 mod Λ, if i = l + t− 2 mod L,

or i = l + t− 1 mod L

0, otherwise.

The above transmission scheme repeats itself after every L
message tuples. Consider a window of L message tuples, e.g.,

t ∈ [1, L]. As there are (L − 1) blocks of transmissions for

each message tuple, there are all together L(L − 1) blocks

of transmissions. Each node transmits in only one block for

two of the L message tuples, and transmits in two blocks

for the other (L − 2) message tuples. So, each node can

transmit with
L(L−1)

2+2(L−2)P , giving an average transmit power of

E[X2
i ] = P . So, for this improved functional-decode-forward

coding strategy, the transmit power of each node, in (10),

can be increased to P ′ = L(L−1)
2+2(L−2) = L

2 P . Note that this

is also true for L = 2 where both users transmit all the

time. Also, note that under this transmission scheme, when

the relay broadcasts all {V i,j} back to the users, each user

can decode other users’ messages using the method described

in Section V-B. This gives the following achievable rate:

Theorem 1: Consider an L-user AWGN MWRC.

Functional-decode-forward achieves the following common

rate:

RFDF = min

{{
1

2(L− 1)
log

[
1

2
+

L

2
P

]}+

,

1

2(L− 1)
log[1 + P0]

}
. (19)

VI. THE COMMON-RATE CAPACITY OF THE AWGN

MWRC

In this section, we consider the case where the transmit

power of all users and the relay is equal, i.e., P0 = P . This

means SNR = P
σ2
0
= P for the relay, and SNR = P0

σ2
i
= P for

every user i (recall that σ2
j = 1, ∀j ∈ [0, L], by definition).

A. Upper Bound

When P0 = P , the upper bound on the common-rate

capacity in Proposition 1 simplifies to

RUB =
1

2(L− 1)
log[1 + P ]. (20)

B. Functional-Decode-Forward

First, we show that functional-decode-forward achieves the

common-rate capacity under certain conditions.

Theorem 2: Consider the AWGN MWRC with P0 = P .

• For L ≥ 3: if P ≥ 1
L−2 , the common-rate capacity is

CCR =
1

2(L− 1)
log[1 + P ], (21)

and it is achievable by functional-decode-forward.

• For L = 2: the common-rate capacity is bounded by{
log

[
1
2 + P

]
2

}+

≤ CCR ≤ log [1 + P ]

2

<

{
log

[
1
2 + P

]
2

}+

+ ε(P ), (22)

where ε(P ) = min
{

1
2 ,

1
2(2P+1) ln 2

}
P→∞−−−−→ 0.

Functional-decode-forward achieves rates within 1
2 bit

of the capacity, and achieves the common-rate capacity

asymptotically as P increases.

Remark 3: For L = 2, the gap ε(P ) normalized to the

capacity upper bound is
ε(P )
RUB

≤ 1
(2P+1) ln[1+P ] . So, functional-

decode-forward achieves the common-rate capacity asymptot-

ically as P increases in an absolute sense as well as in a

normalized (to the upper bound) sense.

Proof of Theorem 2: For L ≥ 3, if P ≥ 1
L−2 , we have

1 + LP ≥ 2 + 2P

1

2(L− 1)
log

[
1

2
+

L

2
P

]
≥ 1

2(L− 1)
log[1 + P ].

So, from (19) and (20), RFDF = 1
2(L−1) log[1 + P ] = RUB.

Next, for L = 2, we have RFDF = 1
2 log

[
1
2 + P

]
as the first

term is smaller than the second term on the RHS of (19). Note

that d
dx log[x] = 1

x ln 2 and d2

dx2 log[x] = − 1
x2 ln 2 < 0. So,

log [x+ δ] < log[x] +
d

dy
log[y]

∣∣∣∣
y=x

((x+ δ)− x)

= log[x] +
δ

x ln 2
.

Hence, from (20),

RUB =
1

2
log [1 + P ] <

1

2
log

[
1

2
+ P

]
+

1

2

1
2(

P + 1
2

)
ln 2

= RFDF +
1

2 (2P + 1) (L− 1) ln 2
.

Furthermore, RUB = 1
2 log

[
2
(
1
2 + P

2

)]
< 1

2 log
[
1
2 + P

]
+

1
2 log 2 = RFDF + 1

2 . Since, RFDF ≤ CCR ≤ RUB, we have

Theorem 2.
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C. Complete-Decode-Forward
From Proposition 2, we have

RCDF = min

{
1

2L
log[1 + LP ],

1

2(L− 1)
log[1 + P ]

}
.

(26)

We first derive the region in which complete-decode-forward

achieves the common-rate capacity.
Theorem 3: Consider the AWGN MWRC with P0 = P .

• For L ≥ 3: if 0 < P ≤ 1, the common-rate capacity is

CCR =
1

2(L− 1)
log[1 + P ], (27)

and it is achievable by complete-decode-forward.

• For L = 2: RCDF < RUB, i.e., the complete-decode-

forward rate is strictly below the capacity upper bound.

Proof of Theorem 3: Define α(L,P ) =
(

1+LP
1+P

)L−1

and

β(P ) = 1+P . From (20) and (26), we can show that RCDF =
RUB iff α(L,P ) ≥ β(P ), and RCDF < RUB otherwise. Note

that α(L, 0) = β(0), and d
dP β(P ) = 1 for ∀P . In addition,

d

dP
α(L,P ) = (L− 1)2(1 + P )−L(1 + LP )L−2 > 0

d2

dP 2
α(L,P ) =

(L− 1)2L(1 + LP )L−3(L− 3− 2P )

(1 + P )L+1
.

For L = 2, d
dP α(L,P )

∣∣
P=0

= 1 and d2

dP 2α(L,P ) < 0. So

α(L,P ) < β(P ), and RCDF < RUB, ∀P > 0.

For L ≥ 3, d
dP α(L,P )

∣∣
P=0

> 1, d2

dP 2α(L,P ) decreases

as P increases, and d2

dP 2α(L,P ) < 0 when P > L−3
2 . So,

there exists a point P ∗(L) > 0, where α(L,P ) ≥ β(P ) for

P ≤ P ∗(L), and α(L,P ) < β(P ) for P > P ∗(L). If we

fix P = 1, since L ≥ 3, we have 1+L
2 ≥ 2, meaning that(

1+LP
1+P

)L−1

≥ 1 + P , and therefore α(L,P ) ≥ β(P ). So,

P = 1 falls into the region in which α(L,P ) ≥ β(P ). This

gives P ∗(L) ≥ 1. Hence, for L ≥ 3 and 0 < P ≤ 1, we have

RCDF = RUB.
Next, we show that the complete-decode-forward rate is

bounded below the capacity upper bound at large P .
Theorem 4: Consider the AWGN MWRC with P0 = P . If

P > LL−1−1, then RCDF < RUB. Furthermore, for any finite

L, as P → ∞, the maximum complete-decode-forward rate is(
log[1+P ]−(L−1) logL

2L(L−1)

)
bits below the common-rate capacity.

The gap between RCDF and RUB increases with P as P → ∞.
Proof of Theorem 4: From (26), if 1

2L log[1 + LP ] ≤
1

2(L−1) log[1 + P ], then RCDF = 1
2L log[1 + LP ]. Now,

1

2(L− 1)
log[1 + P ]− 1

2L
log[1 + LP ]

(ϕ)
=

1

2L(L− 1)

(
log[1 + P ]− (L− 1) log

[
LP + 1

P + 1

])

=
1

2L(L− 1)

(
log[1 + P ]− (L− 1) log

[
L+ 1

P

1 + 1
P

])
.

Since L ≥ 2 and P > 0, we have 1 ≤
(

LP+1
P+1

)L−1

≤ LL−1.

So, if P > LL−1 − 1, the RHS of (ϕ) is strictly positive.

Under this condition, RCDF = 1
2L log[1 + LP ] < RUB =

1
2(L−1) log[1+P ]. From Theorem 2, limP→∞ RUB = CCR.

D. Compress-Forward
Now, we show that the compress-forward rate is bounded

below the common-rate capacity upper bound at all P .
Theorem 5: Consider the AWGN MWRC with

P0 = P . Compress-forward achieves rates up to(
1

2(L−1) log
[
1 + P

(L−1)P+1

])
bits below the capacity

upper bound for all L and P . Furthermore, for any finite

L, as P → ∞, the maximum compress-forward rate is(
1

2(L−1) log
L

L−1

)
bits below the common-rate capacity.

Remark 4: Here, the gap
(

1
2(L−1) log

[
1 + (L−1)P

1+LP

])
is

strictly smaller than 1
2(L−1) stated in [1, Theorem 1].

Proof of Theorem 5: From Proposition 3,

RCF =
1

2(L− 1)
log

[
1 +

(L− 1)P 2

1 + (L− 1)P + P

]

= RUB − 1

2(L− 1)
log

[
1 +

1

(L− 1) + 1
P

]
.

From Theorem 2, limP→∞ RUB = CCR.

E. The Common-Rate Capacity
Combining Theorems 2 and 3, we have:
Theorem 6: Consider the AWGN MWRC with P0 = P .

• For L ≥ 3: The common-rate capacity is CCR = log[1+P ]
2(L−1) ,

and is achievable by

– complete-decode-forward, if 0 < P ≤ 1, and

– functional-decode-forward, otherwise, i.e., P > 1.

• For L = 2:
{

log[ 12+P ]
2

}+

≤ CCR ≤ log[1+P ]
2 <{

log[ 12+P ]
2

}+

+ ε(P ), where lim
P→∞

ε(P ) = 0.

– Functional-decode-forward (where RFDF ={
1
2 log

[
1
2 + P

]}+
) achieves the common-rate

capacity asymptotically as P increases.

Remark 5: If we consider the more general unrestricted
AWGN MWRC where the transmitted signals of each user

can depend on both its message and its past received signals,

the first term on the RHS of (5a) can potentially be increased

as {Xi}1≤i≤L can be correlated, but the second term remains

unchanged as it depends on X0 and does not depend on

{Xi}1≤i≤L. Hence, when P0 = P , RUB in (20) remains

unchanged, meaning that the capacity results in Theorem 6

hold even for the unrestricted AWGN MWRC with P0 = P .
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